Procesamiento del Lenguaje Natural, Revista n® 74, marzo de 2025, pp. 159-178 recibido 05-12-2024 revisado 21-01-2025 aceptado 08-02-2025

On the Impact of Syntactic Infusion for Gender
Categorization Across Contextual Dimensions

Sobre el impacto de la integracion sintdctica en la
categorizacion de género a través de dimensiones contextuales

Inés Veiga Menéndez, Alberto Munoz-Ortiz, David Vilares
Universidade da Coruna, CITIC
Departamento de Ciencias de la Computacién y Tecnologias de la Informacion
Campus de Elvina s/n, 15071, A Coruna, Spain
{i.veigal, alberto.munoz.ortiz, david.vilares}@udc.es

Abstract: This paper investigates how incorporating syntactic information can en-
hance the categorization of text into multiple gender dimensions, defined by our own
identity (as category), the person we are addressing (to category), or the individual
we are discussing (about category). Specifically, we explore the use of dependency
grammars to integrate explicit syntactic embeddings while leveraging the strengths
of pre-trained masked language models (MLMs). Our goal is to determine if de-
pendency grammars add value beyond the implicit syntactic understanding already
captured by MLMs. We begin by establishing a baseline using standard MLMs.
Next, we propose a neural architecture that explicitly integrates dependency-based
structures into this baseline, enabling a comparative analysis of performance and
variations. Finally, in addition to evaluating the results, we analyzed the train-
ing dynamics of the two proposed variants to provide additional insights into their
behavior during the fine-tuning stage. Explicit syntactic information boosts perfor-
mance in single-task setups, though its gains fade in multitask scenarios.
Keywords: Gender Classification, Dependency Grammars, Training Dynamics.

Resumen: Este articulo investiga cémo incorporar informacién sintictica puede
mejorar la clasificacién de textos en multiples dimensiones de género, definidas por
nuestra propia identidad (categoria as), la persona a la que nos dirigimos (categoria
to) o el individuo del que se habla (categoria about). En concreto, exploramos el uso
de gramaticas de dependencias para integrar representaciones sintdcticas explicitas,
complementando las representaciones de modelos de lenguaje enmascarados preen-
trenados (MLMs). Nuestro objetivo es determinar si las gramaticas de dependencias
aportan algo mas alld de la comprensién sintactica implicita ya capturada por los
MLMs. Para ello, primero establecemos un modelo base usando un MLM estdndar.
A continuacién, proponemos una arquitectura neuronal que integra en este modelo
estructuras basadas en dependencias de forma explicita, permitiendo comparar del
rendimiento y las variaciones. Finalmente, evaluamos los resultados y analizamos
las dindmicas las dinamicas de entrenamiento de las dos variantes propuestas para
ofrecer informacién adicional sobre su comportamiento durante la etapa de ajuste
fino. La informacion sintdctica explicita mejora el rendimiento en configuraciones
de tarea tunica, aunque sus beneficios disminuyen en escenarios multitarea.
Palabras clave: Clasificacién de Género, Gramaticas de Dependencias, Dindmicas
de Entrenamiento.
1 Introduction or even sentence structures, revealing under-
lying attitudes and assumptions. This often

Languages inherently manifest biases across
various dimensions, often shaped by societal
norms and cultural contexts (Bolukbasi et al.,
2016; Sap et al., 2020). These biases might be
reflected in our choice of words, expressions,

ISSN 1135-5948 DOI 10.26342/2025-74-11

becomes evident in how we refer to individu-
als, as factors such as age, professional roles,
hierarchical status, or other attributes that
can shape our choice of language. Gender is
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no stranger to these biases (Sun et al., 2019;
Vashishtha, Ahuja, and Sitaram, 2023) and
has, in fact, been one of the most widely stud-
ied dimensions across text (Gonen and Gold-
berg, 2019; Kaneko et al., 2022; Garrido-
Munoz, Montejo-Réez, and Santiago, 2022),
language and vision (Ross, Katz, and Barbu,
2021; Harrison, Gualdoni, and Boleda, 2023;
Fraser and Kiritchenko, 2024), and computer
vision domains (Wang et al., 2019; Schwem-
mer et al., 2020; Wang et al., 2024).

In the case of text-based models, Dinan
et al. (2020) proposed breaking down gen-
der classification—from a contextual point
of view—into three dimensions: the as cat-
egory, which represents the identity of the
person expressing the message; the to cat-
egory, referring to the person being ad-
dressed; and the about category, which con-
cerns the individual being discussed. Ad-
dressing these dimensions in natural lan-
guage processing (NLP) typically involves
a classification approach; and classification
models based on fine-tuning masked lan-
guage models (MLMs), such as BERT (De-
vlin et al., 2019) and RoBERTa (Liu et
al., 2019), have demonstrated strong per-
formance across a range of classification
tasks. Among these, multidimensional gen-
der classification—predicting the as, to, and
about categories—is the focus of this work.
However, Dinan et al. (2020) also noted con-
vergence issues in some cases, suggesting op-
portunities to explore alternative strategies.

The as, to, and about categories con-
vey syntactic meaning. It is known that
MLMSs capture lexical, syntactic, and se-
mantic structures of language within their
latent representations during pre-training,
even when the input lacks explicit structure
(Hewitt and Manning, 2019; Munoz-Ortiz,
Vilares, and Gémez-Rodriguez, 2023; Waldis
et al., 2024). On the other hand, syntactic
parsers achieve excellent results in extracting
syntactic trees, especially for English texts
(Berzak et al., 2016). This context raises the
following question: Can MLM-based classifi-
cation models effectively handle the syntac-
tic nuances of tasks involving these as, to,
and about categories, or could their perfor-
mance be improved by explicitly adding syn-
tactic information to the input data? To ex-
plore this hypothesis, we propose leveraging
dependency parsing (Nivre, 2010)—a syntac-
tic framework that represents sentence struc-
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ROOT My husband is a nurse and | am a full time dad

About: male To: none As: male

Figure 1: Dependency tree illustrating the
syntactic relationships and their connection
to the as, to, and about gender categories.

ture as a graph of binary relationships be-
tween words, with each relationship defining
the syntactic role of a word within the sen-
tence. By integrating dependency-based rep-
resentations, we aim to evaluate if infusing
syntax can provide additional insights or im-
prove the model’s ability to disentangle the
as, to, and about categories more effectively
than relying solely on contextualized word
representations.

Figure 1 illustrates a dependency tree,
highlighting the roles of the about and as
dimensions. The word ‘nurse’ is unambigu-
ously identified as referring to a man due
to its syntactic link to the word ‘husband’,
whose referent in the about dimension is
male. Hypothetically, while predictive mod-
els might incorrectly associate ‘nurse’ with a
woman due to statistical bias, the syntactic
dependency could provide a more precise de-
termination of gender. Similarly, ‘dad’, when
directly to the pronoun ‘I’; could hypotheti-
cally allow the speaker’s gender to be inferred
within the as dimension.

Contribution We investigate the integra-
tion of syntactic information into text classifi-
cation tasks across multiple dimensions: the
as, to, and about categories. By leveraging
dependency grammars, which capture word
relationships (e.g., identifying direct objects
or subjects), we enhance the model’s abil-
ity to interpret linguistic structure. Our ap-
proach emphasizes cost-efficient, task-specific
models, leveraging pre-trained models like
BERT for effective and practical classifica-
tion within resource constraints. First, we
train a multi-task learning (MTL) sequence
classification model using a language encoder
and a hard-sharing decoding architecture to
predict three tasks, one for each category.
Next, we design an adapter to integrate syn-
tactic information, added on top of the MLM
representations. Finally, we apply training
dynamic strategies to investigate whether the
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inclusion of syntax not only impacts the final
results but also influences model convergence
and reveals patterns in the training data.

2 Related Work

Next, we provide an overview of related work,
focusing on gender classification in NLP and
how syntactic features have been used to en-
hance representations.

2.1 Gender Classification in NLP

Challenges arise at every stage of an NLP
system, from data collection to downstream
applications, as systemic patterns in the data
can propagate and amplify throughout the
pipeline. The specific task of gender classi-
fication has been similarly affected by this
issue, leading to studies summarizing efforts
to address disparities and imbalances in NLP
systems (Sun et al., 2019; Stanczak and Au-
genstein, 2021; Bartl et al., 2024).

First, the use of datasets scraped from
public sources makes it challenging to control
if models are trained on biased data. For in-
stance, gender differences have been observed
depending on the gender of the author of a
text (Garimella et al., 2019; Newman et al.,
2008) or the person being discussed (Mar-
janovic, Stanczak, and Augenstein, 2022; Asr
et al., 2021). This initial lack of control over
dataset cretion contributes to the propaga-
tion of these differences in the next steps.

Word embeddings and pre-trained lan-
guage models (PLMs), both masked and au-
toregressive, are particularly susceptible to
this issue due to the vast amount of data
they are trained on. Word embeddings re-
flect and amplify gender biases present in the
training data (Sun et al., 2019; Bolukbasi et
al., 2016), while PLMs have been shown to
reproduce various societal biases, including
gender bias (Kurita et al., 2019; May et al.,
2019; Nangia et al., 2020; Nadeem, Bethke,
and Reddy, 2021; Thakur, 2023), which leak
into downstream tasks (Stanovsky, Smith,
and Zettlemoyer, 2019; Tal, Magar, and
Schwartz, 2022; Sheng et al., 2019). Increas-
ing model size, while often improving perfor-
mance, can exacerbate these biases (Tal, Ma-
gar, and Schwartz, 2022; Bender et al., 2021).

Accurately classifying gender is crucial for
tasks like author profiling, which involves
identifying an author’s profile—including
gender—based on writing style, but this can
be undermined by stereotypical biases (Chen,
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Roth, and Falenska, 2024). Gender classi-
fication is particularly challenging in non-
normative contexts. While LLMs demon-
strate high accuracy in predicting male and
female names, their performance significantly
drops for gender-neutral names (You et al.,
2024). Similarly, NLP models face difficulties
in handling same-gender relationships (Sob-
hani and Delany, 2024).

Due to the complex nature of biases, mit-
igating them remains a challenging task (Go-
nen and Goldberg, 2019). Various mitiga-
tion approaches have been developed (Bartl,
Nissim, and Gatt, 2020; Garimella et al.,
2021), from specialized training data (Web-
ster et al., 2018) and debiasing techniques
(Hall Maudslay et al., 2019) to targeted in-
terventions like balanced demographic repre-
sentation (Sheng et al., 2020; Ghanbarzadeh
et al., 2023). However, these methods face
particular challenges when applied to lan-
guages with grammatical gender (Bartl, Nis-
sim, and Gatt, 2020). Adding context,
such as previous sentence or speaker informa-
tion, can reduce bias in machine translation
(Basta, Costa-jussa, and Fonollosa, 2020).

2.2 Enriching Representations
with Syntactic Features

Syntactic parsing has traditionally been seen
as an important aspect of NLP, contribut-
ing to more advanced language understand-
ing in tasks such as sentiment analysis
(Barnes et al., 2021; Tian, Chen, and Song,
2021), machine translation (Han et al., 2013;
Bugliarello and Okazaki, 2020), and question
answering (Perera and Nand, 2016; Reddy
et al., 2016), inter alia. However, the success
of pretrained models with substantial expres-
sive power has started to challenge this view
(Glavas and Vuli¢, 2021).

Even so, incorporating explicit syntac-
tic information has been shown to improve
MLMs. Bai et al. (2021) proposed a frame-
work that integrates syntactic information
during MLM pretraining, leading to bet-
ter results across various downstream tasks.
Zheng, Fan, and Li (2024) improved cross-
lingual transfer by integrating both lexical
and syntactic information into multilingual
BERT, while Iwamoto et al. (2023) lever-
aged syntactic information to mitigate catas-
trophic forgetting in cased BERT models.
Similarly, it has been shown that these ben-
efits can also extend to fine-tuned MLMs in
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applications such as sentence matching (Liu
et al., 2020), machine translation (Zhang et
al., 2019), and sentiment classification (Cho,
Jung, and Hockenmaier, 2023).

3 The Problem

This work focuses on multidimensional gen-
der classification based on Dinan et al.
(2020), which defines three dimensions of
gender across contextual dimensions:

o About: The gender of the person being
discussed. In the sentence ‘My sister is
a lawyer’, the about dimension would be
labeled as female.

e To: The gender of the person being ad-
dressed. In the sentence ‘Nice to meet
you, Belinda’, the to dimension would
be labeled as female.

e As: The gender of the speaker. In the
sentence ‘My husband is a nurse, and I
am a full-time dad’, the as dimension
would be labeled as male.

To evaluate this problem, Dinan et al.
(2020) introduced the MD Gender dataset,
designed to evaluate classification models
trained to predict one or more of these di-
mensions. It is composed of 2345 dialogs in
North American English, which are manu-
ally annotated in one of more of the men-
tioned categories. Annotations are included
only for the relevant dimensions (about, to,
or as), while the others are marked with
a placeholder value (nil). The labels in
the MD Gender dataset are: ABOUT:male,
ABOUT:female, PARTNER:male, PART-
NER:female, SELF:male, and SELF:female,
where PARTNER corresponds to the to cat-
egory and SELF corresponds to the as cate-
gory. Annotations in each category are split
roughly in half between male and female.

To train models for this task, the au-
thors proposed or referenced several datasets
with annotations that could be mapped to
the about, to, and as dimensions. In this
work, we rely on the Conv Al dataset to train
our models. Its training set comprises 17 878
English multi-turn conversations, which were
automatically annotated in the three dimen-
sions of gender by the authors of MD Gender.
While we attempted to use other datasets,
they were either not released, no longer main-
tained, or we did not receive a response
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from the authors despite multiple contact
attempts. The Conv Al dataset originally
included the labels male, female, gender-
neutral', and unknown, the latter used for
cases where the label is indeterminate. The
training samples are annotated for only one
of the three contextual gender dimensions.

4 Models for multidimensional
gender classification

Next, we present: (1) a brief overview of the
baseline models used as a starting point for
tackling the multidimensional text classifica-
tion problem, and (2) our methodology for
integrating syntactic elements to assess their
influence.

4.1 Baseline models

We use two common approaches in NLP:
single- and multi-task learning (MTL):

e Single-task: A separate model is trained
for each classification task: one for the
about dimension and two others inde-
pendently for the as and to dimensions.

e Multi-task: A single unified model with
a MTL framework. It uses a shared en-
coder to process the input, followed by
three decoders, each responsible for pre-
dicting one of the dimensions.

Formally, for single-task models, the in-
put to these models is a sequence of words,
X = [wi,wy,...,wy,|, where w; represents
the i-th word in the text. The output is a
categorical label y € {1,2,..., K}, where K
is the number of classes for the specific di-
mension. For sequence-to-label models, we
require two main components. First, a text
encoder, Enc(X), which transforms the in-
put sequence into a contextual representa-
tion H. It could be a bidirectional LSTM
or a pre-trained transformer-based language
model (e.g., BERT, RoBERTa, as we will be
using in this work). Second, a classifier head,
Dec(H), which maps the encoded represen-
tation H to the output label probabilities

"We fully recognize and respect that gender is a
non-binary and multidimensional concept. However,
the decision to exclude the gender-neutral label in
this work was not ours but a consequence of the MD
Gender dataset lacking an equivalent representation
for this category. We acknowledge this as a limitation
of our approach and a shortcoming of the evaluation
framework.
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through a fully connected layer and a soft-

max activation. The model is trained by min-

imizing the cross-entropy loss, expressed as
N K k ~(k

_% Dim1 Dokt Yz( )log Yz( )’ where

(k)

i

Esingle =
ygk) is the true label distribution, and ¥
the predicted probability for class k.

For multi-task models, the input X =
[w1,wa,...,wy] is the same, but shared
across tasks, and the output is a set of
predictions {Yabout, Yas, Yto}, one for each
dimension. The MTL model consists of
a shared encoder, Enc(X), which gener-
ates a common representation H for the
input text. This shared representation is
then passed to task-specific decoder heads,
Dec,pout, Decas, Dect,, each of which pro-
duces a prediction for its respective dimen-
sion. We train the models by jointly mini-
mizing a combined loss, expressed as L1t =
Lavout +Las+ Lo, where each component loss
Ldimension represents the cross-entropy loss
for the corresponding task.

is

4.2 Syntax-infused models

Next, we describe our approach for integrat-
ing syntactic embeddings and contextualized
word vectors and review key concepts and no-
tation related to dependency parsing.

4.2.1 Basics and Notation

Let G = (V,E) represent a dependency
graph, where V is the set of nodes and F C
V x D x V is the set of edges. Here, D de-
notes the set of possible dependency types.
A dependency graph is formally defined as
a collection of triplets of the form (v,d,w),
where v,w € V and d € D. Each triplet
(v, d,w) represents a directed edge from node
v to node w, with the edge labeled by the de-
pendency type d. Here, we consider v and
w as integers referring to the input words in-
dexed at the v-th and w-th positions of the
input sentence?. In this work, we focus on de-
pendency trees, which are a specialized form
of dependency graphs with additional restric-
tions. Specifically, a dependency tree has
a single-head constraint, meaning each node
(except the root, which serves as the origin
of all dependencies) has exactly one incom-
ing edge. Additionally, the structure must be
acyclic. For example, in Figure 1, the word

2The first actual word of the sentence is considered
to be indexed at 1. Additionally, it is common to add
a dummy word, indexed at position 0, which points
to the actual root of the sentence.
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‘a’ is dependent on the word ‘nurse’ and is
connected by a dependency labeled as det.

One of the main challenges in combining
syntactic structures and word sequences is
that generic encoders, like MLMs, process in-
puts as flat sequences of words, while syn-
tactic information is represented as a tree.
This mismatch makes it difficult to effectively
combine sequence-level and tree-structured
information. As a result, models that try to
incorporate both often end up with rigid and
overly specialized architectures.

Traditionally, this has been addressed
using classic parsing approaches, such as
transition- or graph-based methods (Nivre,
2010). More recently, an alternative ap-
proach has been developed that represents
dependency trees as sequences of labels, as-
signing each word a label that encodes part
of the tree (Li et al., 2018; Strzyz, Vilares,
and Gémez-Rodriguez, 2019; Amini, Liu, and
Cotterell, 2023). This strategy was developed
to make tree computation more straightfor-
ward with standard tagging models, but it
also provides a way to represent trees as flat
sequences, making them easier to integrate
with word embeddings. Next, we describe
the key concepts of parsing as sequence la-
beling and the encodings proposed in (Strzyz,
Vilares, and Gémez-Rodriguez, 2019; Strzyz,
Vilares, and Goémez-Rodriguez, 2020) that
we will be using in this work.

4.2.2 Parsing as Sequence Labeling

Sequence labeling involves learning a one-to-
one mapping between elements of an input
sequence (e.g., words, characters, or subword
units) and a set of labels. Each input element
is assigned one label, enabling structured pre-
dictions over the sequence. This approach
has proven useful in tasks like parsing, offer-
ing a faster and more efficient way to compute
syntactic or semantic structures compared to
traditional methods. However, we will use
these linearizations with a different objective:
incorporating syntactic information into mul-
tidimensional contextual classification.?

3Parsing linearizations have previously been ex-
plored to enhance other tasks. For example, con-
stituent parsing linearizations have been applied
to improve semantic role labeling (Johansson and
Nugues, 2008), dependency parsing has been uti-
lized as part of a pre-training phase for low-resource
languages (Rotman and Reichart, 2019), and even
as components in pipeline systems for tasks such
as sentiment analysis (Imran, Kellert, and Gdémez-
Rodriguez, 2024).
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Building a linearized tree involves assign-
ing each word w; a label (z;,[;), where l; rep-
resents the dependency type, and x; encodes
a subset of the tree’s arcs. We next describe
how z; is encoded, as [; consistently denotes
the dependency type. Figure 2 shows exam-
ples for the encodings used, explained below.

Absolute Positional Encoding In de-
pendency trees, each dependent node has
one head. FEach edge is represented as
(wi, dj,w;) € E, where w; € V is the head,
w; € V is the dependent, and d; € D is the
dependency type between w; and w;. Due to
the single-head restriction, a naive encoding
is to assign each w; a label of the from j repre-
senting the absolute position of its head word
in the sentence. As an example, consider Fig-
ure 2, where the label (3, 0bj) assigned to the
word ‘you’ signifies that its syntactic head,
‘meet’ , is positioned at index 3 in the sen-
tence with the dependency relation obj.

Relative Positional Encoding A varia-
tion of absolute positional encoding, where,
instead of storing the absolute position of the
head, each word is assigned an offset of the
form j — i to encode the component z; of
the syntactic label. The main motivation is
to achieve a more compact and standardized
representation. For instance, there are fre-
quent left dependencies where the head of
a word is the immediately preceding term
(i.e., j —i = —1), or more generally, where
the head is k positions to the left or right.
These offsets reflect recurring syntactic pat-
terns. In absolute positional encoding, the
associated labels depend on the position of
w; in the sequence, leading to variability. In
contrast, relative encoding assigns the same
label to equivalent dependency arcs, regard-
less of their position in the sequence. This
standardization simplifies the representation,
and may emphasize underlying syntactic pat-
terns. Theoretically, this standardization en-
hances the encoding’s learnability, which was
the main reason for its introduction.

Part-of-speech-based encoding It inte-
grates both grammatical categories and rela-
tive positioning within the dependency tree
to define offsets between dependents and
heads. For a pair of words (w;,w;) it assigns
the dependent word w; a label x;, represented

4This labeling approach corresponds to the
CoNLL-U format, a standard for encoding depen-
dency trees in plain text.
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as a tuple (p;,05). Here, p; denotes the PoS
tag of the head word w;, and o; specifies the
number of words to the right or left that share
the same PoS tag as the head. Positive values
of o; represent words to the right, while nega-
tive values indicate words to the left. For ex-
ample, in Figure 2, the dependency arc links
‘you” (w;) and ‘meet’ (w;). Here, ‘meet’ is
the first verb to the left of ‘you’, so the label
for ‘you’ is (VERB, —1,0bj), i.e. ‘you’ is re-
lated to the nearest preceding verb through
an object dependency. This representation
explicitly encodes simple syntactic patterns
within the label itself. Still, it requires pre-
computed or dynamically generated labels for
real data, which we obtain by running the
Stanza PoS tagger (Qi et al., 2020).

Bracketing encoding Each word wj is as-
signed a label in the form (z;,1;), where z;
is a text string encoding the incoming and
outgoing arcs of w; and its neighbors, and
l; represents the dependency relation label
connecting w; to its parent node. The string
x; adheres to the following regular expres-
sion: ()?(C\)*|(/)*) (>)?, where < indi-
cates that w;_1 has an incoming arc from the
right; a repetition of \ k times means that w;
has k outgoing arcs to the left; a repetition
of / k times signifies that w;_1 has k out-
going arcs to the right; and > indicates that
w; has an incoming arc from the left. This
representation captures the structural rela-
tionships between a word, its neighbors, and
the dependency arcs within the tree.

We use Stanza’s dependency parser to
compute trees that are later linearized using
these encodings.

5 Training dynamaics
When working with classification models,
larger datasets are generally preferred due
to their potential for improving overall per-
formance. However, their size can compli-
cate the quality analysis and obscure insights
into training dynamics. In response to this,
Swayamdipta et al. (2020) introduced a
method to analyze the behavior of a clas-
sification model through individual sample
assessments. They applied this method to
a natural language inference task, categoriz-
ing sentence pairs as linked, contradictory, or
neutral.

Formally, given a dataset {(z;,y;)}Y, of
size N, where z; represents the i-th observa-
tion and y; the true label, we define the train-
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advcl obj

root /mark\ m

<Root> Nice to meet you Belinda
ADJ PART VERB PRON PROPN
0 1 2 3 4 5
Naive positional encoding (0,root) (3,mark) (1,advcl) (3,0bj) (3,0bj)
Relative positional encoding (-1,root) (+1,mark) (-2,advcl) (-1,0bj) (-2,0bj)
Relative PoS-based encoding (ROOT,-1,root) (VERB,+1,mark) (ADJ,-1,advcl) (VERB,-1,0bj) (VERB,-1,0bj)
Bracketing-based encoding (/,root) (<,mark) (\>//,advcl) (>,0bj) (>,0bj)

Figure 2: Examples of the different encodings used in this work. Positional encodings mark
where the head of a token is, while bracketing encodings represent some of the incoming and

outgoing arcs of a token.

ing dynamics of the dataset through statisti- in the determination of correctness. Upon
cal characterization across E training epochs. analyzing these metrics, we create a data
Following Swayamdipta et al. (2020), we map that visually organizes training sam-
compute the following statistical parameters: ples according to their variability and con-
fidence. This map groups samples into cate-

e Correctness: It measures how often the gories like easy-to-learn (with consistent and
model correctly predicts the true label y; confident predictions), hard-to-learn (marked
throughout the training epochs: by low confidence and possibly mislabeled or

E

1 . ing high variability, which helps improve the
Correctness; = E Z; 1(Gie = 4i) model’s generalization).
o=
e Confidence: It measures how certain the 6 Ezxperiments

model is of having assigned the correct
label. The confidence value for a sample Next, we present the experiments con-
(zi,yi) is defined as the average prob- ducted using the MLMs, comparing their
ability of correctly predicting the label performance when trained with input
across all training epochs: consisting solely of words versus when
5 syntax is explicitly infused into the in-
o1 . put. Additionally, we analyze whether
pi= E;pmﬁ) (Gil:) there are differences in training dynamics

uninformative data), and ambiguous (show-

between these two approaches, following

e Variability: It measures how consistent
the model is in predicting labels across
different training cycles. A low variabil-
ity indicates that the model consistently
assigns the same label (whether correct
or incorrect), while high variability sug-
gests that the model is more uncertain
in its label assignments:

5 N . these models is to investigate if performance

6, = \/Zel(p9<e) (9ilwi) — ;) trends vary based on the model’s capacity

E and strength. For instance, DistilBERT is

generally less robust than BERT, which tends

To evaluate these parameters, we capture to underperform compared to RoBERTa. In

the probabilities of correct classification for the single-task setup, we train an indepen-

each sample within a tensor and review this dent model for each task. In the multi-task

data after training to assess confidence and setup, we train a model that learns all three

variability. Concurrently, a separate tensor tasks simultaneously. Hyperparameters are
logs the accuracy of each prediction, assisting described in Appendix B.
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the approach described in §5. The code
is at https://github.com/Kuina-sama/
syntax-infusion-gender-classification.

Setup We train both single-task and multi-
task learning models using three different
MLMs: DistilBERT (Sanh et al., 2019),
BERT (Devlin et al., 2019), and RoBERTa
(Liu et al., 2019). The motivation for using
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Metrics We use the macro F1-score as the
main evaluation metric.® It is computed as
F1 =2 %, where precision is
the proportion of correctly predicted positive
cases among all predicted positive cases, and
recall is the proportion of correctly predicted

positive cases among all actual positive cases.

6.1 Experimental results

Table 1 presents the results of single-task
models trained to predict male and female
categories within the about category.

Model | Infusion | Avg | M F
no 84.09 | 83.72 | 84.46

— |abs 85.25 | 85.20 | 85.29
£ [xel 85.59 | 85.57 | 85.60
m |pos 84.86 | 84.90 | 84.82
brackets | 84.82 | 84.80 | 84.84

= |no 83.92 [83.52 [ 84.31
= [abs 83.93 | 83.85 | 84.01
B [rel 83.84 [83.69 [ 83.99
% [pos 84.35 | 84.19 [ 84.51
B [brackets | 83.97 | 83.87 | 84.07
- |mo 86.18 | 85.97 | 86.38
£ [abs 85.81 [ 85.63 | 86.05
E [rel 86.26 | 86.13 | 86.39
2 [pos 85.71 [85.48 | 85.94
~ brackets | 86.39 | 86.26 | 86.52

Table 1: Fl-scores for the about dimension,
including male and female categories.

This category was the easiest across all
gender contextual dimensions. It can be
noted that explicitly introducing syntax can
lead to improvements compared to baseline
models. In particular, the BERT model
shows an improvement of approximately 1.5
points in the Fl-score when employing rela-
tive positional encodings, with similar gains
observed for other encodings and consistent
improvements for both male and female cat-
egories. Meanwhile, the DistilBERT and
RoBERTa models exhibit more subtle vari-
ations. Notably, the bracketing-based en-
coding enhances RoBERTa’s performance by
about 0.2 points. Overall, RoOBERTa variants
were the best performers, although the differ-
ences across various masked language models
were generally not substantial.

Table 2 provides a corresponding overview
of performance in the to dimension. This
dimension was the harder for both models
with and without explicit syntax integration.

5The Fl-score provides a balanced measure that
is particularly useful for imbalanced datasets.
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Model | Infusion | Avg M F
no 49.00 | 42.30 | 57.49

= abs 51.54 | 43.96 | 59.12
B rel 52.26 | 45.65 | 53.86
@ [ pos 16.16 | 32.16 | 60.16
brackets | 57.15 | 54.67 | 59.62

= |no 49.09 | 37.83 | 60.35
= [abs 1785 | 34.23 | 6147
2 [rel 54.33 | 40.46 | 59.10
Z pos 56.02 | 49.83 | 62.21
A | brackets | 51.24 | 42.61 | 59.86
- | no 41.80 | 17.61 | 65.99
£ [abs 60.39 | 54.70 | 66.08
B [rel 55.59 | 40.58 | 61.50
2 [pos 39.35 | 14.32 | 64.37
= [brackets | 53.75 | 44.65 | 62.85

Table 2: Fl-scores for the to dimension, in-
cluding male and female categories.

Model | Infusion F1 M F
1o 19.88 | 36.97 | 62.78

— abs 73.24 | 72.51 | 73.96
= rel 67.93 | 68.40 | 67.46
aa) pos 74.48 | 74.09 | 74.87
brackets | 74.24 | 72.85 | 75.63

= 10 44.00 | 24.46 | 63.53
= [abs 67.77 | 66.39 | 69.14
M rel 62.71 | 59.45 | 65.97
2 pos 66.85 | 64.45 | 69.24
a brackets | 62.13 | 59.83 | 64.42
- 1o 32.79 | 0.33 | 65.24
= abs 79.37 | 80.03 | 78.71
&) rel 7734 | 77.70 | 76.98
2 [pos 79.99 | 80.38 | 79.59
= [brackets | 76.94 | 77.37 | 76.51

Table 3: Fl-scores for the as dimension, in-
cluding male and female categories.

The positive impact of explicitly incorporat-
ing syntactic information into the models is
more clear for this dimension. The baseline
models struggled classifying samples from the
male category. This issue was particularly
pronounced in the RoBERTa-based model,
echoing similar findings reported in the orig-
inal release of the MD Gender (Dinan et al.,
2020). BERT, whose baseline implementa-
tion obtained more balanced results, showed
a 7-point improvement in Fl-score when us-
ing the bracketing-based encoding. Interest-
ingly, the DistilBERT model showed the best
results when using the relative PoS-based en-
coding. For RoBERTa, the inclusion of ab-
solute positional encoding improves perfor-
mance, boosting the F1-score by a large mar-
gin. This suggests that incorporating syn-
tactic information can enhance overall per-
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formance while also addressing specific chal-
lenges in classifying certain gender labels—a
limitation that has been previously noted
in this model. Consequently, the model
achieves more balanced performance across
male and female categories, reducing bias.
However, not all models benefit equally from
this approach. Specifically, encodings based
on part-of-speech information present chal-
lenges. Interestingly, this aligns with find-
ings in dependency parsing, where using pre-
dicted POS tags (in this case, generated with
Stanza) can empirically lead to lower per-
formance compared to alternative encodings
(Munoz-Ortiz, Strzyz, and Vilares, 2021).

Finally, Table 3 presents the performance
for the third contextual dimension, the as di-
mension. The single-task results show that
adding explicit syntactic information to in-
puts improves overall performance and re-
duces gender biases, particularly improving
male classification, where baseline models
struggled. Performance boosts vary depend-
ing on the encoder but are significant in
all cases. Notably, even for RoBERTa, de-
spite the convergence issues observed in the
syntax-free baseline,® the inclusion of syntac-
tic information resulted in clear gains.

Table 4 presents the results for all con-
textual models trained as a single multi-task
model across the about, to, and as dimen-
sions. In this setup, incorporating syntac-
tic information leads to small but consistent
improvements. For BERT, absolute posi-
tional encoding improves performance in the
about and to dimensions. Similarly, Distil-
BERT benefits from relative PoS-based en-
coding, and RoBERTa shows improved re-
sults with relative positional encoding, in-
cluding a slight gain in the as dimension.

Overall, the improvements in this MTL
setup are much smaller than those observed
in single-task setups. One possible explana-
tion is that the MTL configuration, with its
shared parameters and combined loss func-
tion, inherently helps the model differentiate
between the contextual dimensions (about, to,
and as). This shared setup might introduce
an inductive bias in the shared encoder, guid-
ing it to learn syntactic dependencies as part
of optimizing for the combined loss across
the dimensions. This implicit differentiation
could reduce the relative impact of explic-

5We made additional efforts to address these con-
vergence issues but were unsuccessful.
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Figure 3: Data Maps: DistilBERT single-
task on about, baseline vs. syntax-aware.

itly incorporating syntactic information, as
the model can already leverage task interde-
pendence to improve performance.

6.2 Analysis with Training
Dynamics

We present additional insights into the task
at hand, relying on training dynamics, as in-
troduced in §5. To illustrate these dynamics,
Figures 6, 7, and 8 in the Appendix present
the dataset cartography generated by the
DistilBERT model trained on the as, about,
and to dimensions, respectively, in a single-
task setup, plotting the confidence, variabil-
ity, and correctness metrics.” For the as
dimension, most samples exhibit low confi-
dence, low variability, and low correctness
values, with no identifiable easy-to-learn or
ambiguous categories. In contrast, for the
about dimension, most samples exhibit high
confidence and low variability, placing them
in the easy-to-learn category. For the to di-
mension, the confidence and variability met-
rics are notably lower than those for about,
aligning with the low performance observed.

To better understand the effect of infus-
ing syntax, Figures 3, 4, and 5 compare the
training dynamics for the about, to, and as
dimensions, respectively, highlighting the dif-
ferences between models trained without and
with explicit syntactic infusion. DistilBERT
was used for these comparisons, along with
the syntactic encoding that performed best.

"Our analysis focuses on single-task models, as
multi-task models showed minimal differences be-
tween syntactic and non-infused models, with train-
ing dynamics yielding no significant results.
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Model | Infusion About To As
Avg M F Avg M F Avg M F

no 83.06 82.57 &83.55 | 69.97 70.76 69.17 | 72.96 73.37 72.55
—~ abs 84.10 83.93 84.26 | 70.10 71.77 68.43 | 72.82 73.50 72.14
% rel 83.20 83.09 &3.31 | 70.84 72.35 69.33 | 72.29 73.18 71.39
aa) pos 83.42 83.36 83.47 | 69.99 71.89 68.09 | 72.55 73.52 T71.57

brackets | 83.46 83.31 83.60 | 69.26 71.04 67.47 | 7247 73.20 71.73
H no 80.86 80.60 &1.12 | 66.38 67.40 65.36 | 72.01 71.53 72.48
g abs 81.50 81.43 R&1.56 | 66.51 68.34 64.67 | 71.66 71.48 71.83
as) rel 81.67 81.77 8157 | 65.16 67.77 62.55 | 71.22 71.57 70.87
= pos 81.38 81.27 8149 | 66.81 68.68 64.93 | 72.06 71.96 72.15
a brackets | 81.80 81.63 81.96 | 66.17 68.18 64.15 | 72.14 72.11 72.17
< no 83.54 83.21 R83.87 | 72.35 73.39 T71.30 | 72.96 73.42 72.50
E abs 84.78 84.59 84.96 | 7T1.71 72.93 70.48 | 73.42 7T74.18 72.66
= rel 83.93 83.72 84.13 | 73.02 74.13 71.90 | 73.38 74.13 72.63
% pos 84.77 84.51 &85.03 | 71.59 72.67 70.51 | 72.91 73.64 72.17
= brackets | 84.47 84.23 84.71 | 72.13 73.18 71.07 | 73.24 73.96 72.52

Table 4: Results for contextual models trained as a single multi-task model across the about, to,

and as dimensions.
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Figure 4: Data Maps: DistilBERT single-
task on to, baseline vs. syntax-aware.
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Due to the large number of data points, we
randomly sampled a fraction of the points.
For the about dimension, we observed
in §6.1 that including syntactic information
barely modified performance. This is also re-
flected in the training dynamics (Figure 3),
where including syntactic information only
results in a slight improvement in variabil-
ity. Similarly, changes in performance for
the to dimension were modest, which is con-
sistent with the small differences shown in
training representations in Figure 4. Finally,
Figure 5 shows that including syntactic in-
formation boosts both higher variability and
higher confidence for the as dimension, help-
ing the model differentiate the samples. This
causes a large boost in F1l-score compared to
the baseline model, which did not converge.

7 Conclusion

We studied masked language models that
implicitly encode syntax versus those aug-
mented with explicit syntactic information
for the task of multidimensional gender cate-
gorization into about, to, and as dimensions.
By incorporating linearized dependency la-
bels, we showed that explicitly enriched mod-
els could consistently outperform their coun-
terparts in reducing gender mistakes and im-
proving classification accuracy, particularly
in single-task setups. However, these im-
provements largely diminished in multi-task
learning. With respect to future work, it
should assess syntactic infusion in multilin-
gual settings and extend gender classification
for greater inclusivity.
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A Additional results for training
dynamics

Figure 6 presents the data map generated
during the training of DistilBERT in a single-
task setup for the about dimension. A large
portion of the samples exhibits high confi-
dence and low variability, placing them in the
easy-to-learn category. However, the figure
also highlights areas for improvement, as a
notable number of samples display low con-
fidence, low variability, and low correctness
values. Specifically, samples represented in
blue, orange, and green indicate instances
where the correctness rate falls below 0.5.
These samples may be ambiguous or difficult
to learn, suggesting the potential to explore
better representations for these inputs to fa-
cilitate their learning.

Figure 7 illustrates the representation of
the training samples obtained after training
the DistilBERT model on the as dimension
without incorporating explicit grammatical
information. In this representation, the vari-
ability parameter exhibits very low values,
while the confidence level achieved is mod-
erate. This indicates that no samples were
identified during this training process that
could be categorized as easy-to-learn or am-
biguous. The absence of these two regions,
which are crucial for effective model learning,
might explain the low performance observed,
with an average F1 score of only 0.44 when
evaluating this model.

Figure 8 presents the data map generated
during the training of DistilBERT in a single-
task setup for the to dimension. In this rep-
resentation, the values for the confidence and
variability metrics are notably lower than for
the about. This phenomenon aligns with the
low performance observed in the single-task
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models trained on the to dimension. Despite
efforts to improve these results through hy-
perparameter adjustments, no significant im-
provements were achieved.

B Model Training

Hyperparameters
Parameter Value
Learning Rate 1x10°1°
Number of Epochs 100
Weight Decay 0.1
Optimizer AdamW
Loss Function Cross Entropy Loss
Dropout Rate 0.1
Encoder Dimension 768
LSTM Hidden Dimension | 128
Embedding Dimension 100

Table 5: Hyperparameters used to train the
models employed in this work
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Figure 6: Data mapping of the ConvAI2 training dataset used to train a DistilBERT baseline
model in a single-task setup for the about dimension.
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